Scattering of gravity waves by a circular dock

By JOHN MILES \dagger and FREEMAN GILBERT \ddagger

Institute of Geophysics and Planetary Physics, University of California, La Jolla
(Received 6 May 1968)
The scattering of a gravity wave of wave number k by a circular dock of radius a and draft $d-h$ in water of depth d is calculated through a variational approximation. The total and differential scattering cross-sections, the peripheral displacement, and the lateral force on the dock are presented as functions of $k a$ with d / a and h / d as parameters and compared with the classical results for a circular cylinder ($h=0$). A pronounced resonance is found near $k a=2$ for certain values of d / a and h / d.

1. Statement of problem

We consider the scattering of a gravity wave of amplitude ζ_{0} and period $2 \pi / \sigma$ by a circular dock of radius a and draft $d-h$ in water of depth d (see figure 1 ; we disregard any supporting structure in $z<h) \S$. We assume small displacements and irrotational flow, so that the motion of the water is governed by the classical linearized theory (Lamb 1932, chapter 9). The problem for $h=0$ is equivalent to the acoustical problem of the scattering of a plane wave by a circular cylinder (Lamb, §304).

Following the usual convention for simple harmonic motions, we suppose that the free-surface displacement is given by the real part of $\zeta \exp (-i \sigma t)$ and pose the incident wave in the alternative forms

$$
\begin{align*}
\zeta_{i} & =\zeta_{0} e^{i k x} \tag{1.1a}\\
& =\zeta_{0} \sum_{m=0}^{\infty} \epsilon_{m} i^{m} J_{m}(k r) \cos m \theta \tag{1.1b}
\end{align*}
$$

and the total disturbance in the form

$$
\begin{equation*}
\zeta(r, \theta)=\zeta_{0} \sum_{m=0}^{\infty} \epsilon_{m} i^{m} \chi_{m}(r) \cos m \theta \tag{1.2}
\end{equation*}
$$

The cylindrical-wave representation of (1.1b) follows from the plane-wave representation of (1.1 a) by virtue of Jacobi's expansion, wherein ϵ_{m} is Neumann's symbol:

$$
\begin{equation*}
\epsilon_{0}=1, \quad \epsilon_{m}=2 \quad(m \geqslant 1) . \tag{1.3}
\end{equation*}
$$

[^0]The wave number k is related to σ through the dispersion equation

$$
\begin{equation*}
k \tanh k d=\kappa \equiv \sigma^{2} / g \tag{1.4}
\end{equation*}
$$

We now introduce the displacement potential ϕ (the corresponding velocity potential is $-i \sigma \phi)$ in the form

$$
\begin{equation*}
\phi(r, \theta, z)=\zeta_{0} \sum_{m=0}^{\infty} \epsilon_{m} i^{m} \psi_{m}(r, z) \cos m \theta \tag{1.5}
\end{equation*}
$$

such that

$$
\begin{equation*}
\chi_{n}(r)=\left(\partial \psi_{m} / \partial z\right)_{z=-d} . \tag{1.6}
\end{equation*}
$$

Figure 1. Circular dock of draft $d-h$ in water of depth d (supporting structure not considered).

Invoking the hypothesis of irrotational flow and the linearized free-surface condition and requiring the normal displacement to vanish at the rigid boundaries, we obtain the following boundary-value problem:
$\nabla^{2} \phi=0$,
$\phi_{z}=0 \quad(z=0)$,
$\phi_{z}-\kappa \phi=0 \quad(z=d, r \geqslant a)$,
$\phi_{r}=0 \quad(r=a, h<z \leqslant d)$,
$\phi_{z}=0 \quad(z=h, 0 \leqslant r<a)$.
We also require the scattered waves to satisfy the appropriate radiation and finiteness conditions as $r \rightarrow \infty$; in particular, ζ must have the asymptotic form

$$
\begin{equation*}
\zeta \sim \zeta_{i}+\zeta_{0}(a / r)^{\frac{1}{2}} e^{i k r} A(\theta) \tag{1.12}
\end{equation*}
$$

where $A(\theta)$ is the dimensionless scattering amplitude (cf. Morse \& Feshbach 1953).

We seek especially the scattering amplitude, the differential scattering crosssection, $|A(\theta)|^{2}$, the total scattering cross-section,

$$
\begin{equation*}
Q=a \int_{0}^{2 \pi}|A(\theta)|^{2} d \theta \tag{1.13}
\end{equation*}
$$

the displacement amplitude on the periphery of the dock, $\zeta(a, \theta)$, and the lateral force on the dock, X.

We attack the boundary-value problem posed in (1.7)-(1.11) by constructing (in §2) representations of ϕ in the interior domain (under the island) and the exterior domain $(r>a)$ in terms of the radial displacement, say $f(z, \theta)$, on the cylindrical interface $r=a, 0 \leqslant z<h$, such that the solution reduces to that for a circular cylinder $(\hbar=0)$ if $f(z, \theta) \equiv 0$. We then (in $\S 3$) construct a Schwingertype variational approximation (Levine \& Schwinger 1948) to the surface-wave amplitude that is: (a) stationary with respect to first-order variations of $f(z, \theta)$ about the true solution and (b) invariant under a scale transformation of $f(z, \theta)$. We then go on to calculate the scattering amplitude (in §4) and the peripheral displacement and the lateral force (in §5).

2. Modal expansions

We obtain separate representations of ψ_{m} in the interior domain, $0 \leqslant r<a$ and $0 \leqslant z \leqslant h$, and the exterior domain, $r \geqslant a$ and $0 \leqslant z \leqslant d$, in terms of the auxiliary function $f_{m}(z)$, such that

$$
\begin{align*}
\left(\partial \psi_{m} / \partial r\right)_{r=a} & =f_{m}(z) & & (0 \leqslant z<h) \tag{2.1a}\\
& =0 & & (h<z \leqslant d) . \tag{2.1b}
\end{align*}
$$

We then determine f_{m} from the requirement that ψ_{m} be continuous at $r=a$ in $0 \leqslant z \leqslant h$.

Solving Laplace's equation, (1.7), by separation of variables, we find that the most general solutions consistent with the representation (1.5) and the respective boundary conditions may be constructed by superposition of the modal solutions,

$$
\begin{align*}
\phi_{m n} & =I_{m}(n \pi r / h) \cos (n \pi z / h) \cos m \theta \quad(n=1,2, \ldots) \tag{2.2a}\\
& =(r / a)^{m} \cos m \theta \quad(n=0), \tag{2.2b}
\end{align*}
$$

which satisfy (1.8) and (1.11) and are bounded in $r=[0, a]$, and

$$
\begin{align*}
\phi_{m} & =K_{m}(\alpha r) \cos \alpha z \cos m \theta \quad(\alpha>0) \tag{2.3a}\\
& =\left\{J_{m}(k r), H_{m}(k r)\right\} \cosh k z \cos m \theta \quad(\alpha=-i k), \tag{2.3b}
\end{align*}
$$

which satisfy (1.8) and (1.9) if α is a root of

$$
\begin{equation*}
\alpha \tan \alpha d+\kappa=0 . \tag{2.4}
\end{equation*}
$$

[^1]J_{m} is an ordinary Bessel function, and the corresponding $\phi_{m k}$ belong to the incident wave; H_{m} is a Hankel function of the first kind (we may omit the conventional superscript 1 without ambiguity), and the corresponding $\phi_{m k}$ represent outgoing surface waves, which decay exponentially with distance from the free surface; K_{m} is a modified Bessel function, and the corresponding $\phi_{m \alpha}$ represent trapped internal waves, which decay exponentially as $r \rightarrow \infty$.
We determine ψ_{m} in the interior domain by expanding $f_{m}(z)$ in the Fourier series
where
\[

$$
\begin{equation*}
f_{m}(z)=\sum_{n=0}^{\infty} \epsilon_{n} F_{m n} \cos (n \pi z / h), \tag{2.5}
\end{equation*}
$$

\]

$$
\begin{equation*}
F_{m n}=(1 / h) \int_{0}^{h} f_{m}(z) \cos (n \pi z / h), \quad F_{00} \equiv 0 . \tag{2.6a,b}
\end{equation*}
$$

The required expansion of ψ_{m}, as determined by $(2.1 a)$, then is

$$
\begin{equation*}
\psi_{m}(r, z)=\frac{a F_{m 0}}{m}\left(\frac{r}{a}\right)^{m}+2 \sum_{n=1}^{\infty} \frac{F_{m n} I_{m}(n \pi r / h) \cos (n \pi z / h)}{(n \pi / h) I_{m}^{\prime}(n \pi a / h)} \quad(0 \leqslant r \leqslant a, \quad 0 \leqslant z \leqslant h) . \tag{2.7}
\end{equation*}
$$

We could add a constant to ψ_{0}, corresponding to the mode obtained by setting $m=0$ in (2.2b), but the resulting modification of the subsequent formulation would be trivial provided that the constraint implied by ($2.6 b$), namely

$$
\begin{equation*}
\int_{0}^{h} f_{0}(z) d z=0 \tag{2.8}
\end{equation*}
$$

is satisfied.
We find it expedient, in determining ψ_{m} in the exterior domain, to introduce the normalizing factors

$$
\begin{align*}
& N_{\alpha}=\frac{1}{2}\left[1+(2 \alpha d)^{-1} \sin 2 \alpha d\right] \tag{2.9a}\\
& N_{k}=\frac{1}{2}\left[1+(2 k d)^{-1} \sinh 2 k d\right] \tag{2.9b}
\end{align*}
$$

then, the functions
$Z_{\alpha}(z)=N_{\alpha}^{-\frac{1}{2}} \cos \alpha z$
$Z_{k}(z)=N_{k}^{-\frac{1}{2}} \cosh k z$
have mean-square values of unity and form a complete orthogonal set in $z=(0, d)$ if the spectrum of α is defined to include each of the infinite, discrete set of positive roots of (2.4) and, in addition, the negative imaginary $\operatorname{root} \alpha=-i k$, for which (2.4) is equivalent to (1.4) and

$$
\begin{equation*}
K_{m}(-i k r)=\frac{1}{2} \pi i^{m+1} H_{m}(k r) . \tag{2.11}
\end{equation*}
$$

The solution for ψ_{m} in $r>a$ must be of the form

$$
\begin{equation*}
\psi_{m}=\psi_{m i}+\psi_{m s} \quad(r \geqslant a) \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{m i}(r, z)=J_{m}(k r)\left[Z_{k}(z) / Z_{k}^{\prime}(d)\right] \tag{2.13}
\end{equation*}
$$

represents the incident wave [as may be shown by substituting (2.13) into (1.2) by way of (1.6)], and $\psi_{m s}$ comprises only outgoing and trapped waves that must
be determined by $(2.1 a, b)$. Expanding the right-hand side of $(2.1 a, b)$ in the $Z_{\alpha}(z)$, we find that the required expansion of ψ_{m} is given by

$$
\begin{align*}
& \begin{array}{l}
\psi_{m}(r, z)=\left\{J_{m}(k r)-\left[J_{m}^{\prime}(k a) / H_{m}^{\prime}(k a)\right] H_{m}(k r)\right\}\left[Z_{k}(z) / Z_{k}^{\prime}(d)\right] \\
\\
\\
\\
\text { where } \quad+\sum_{\alpha} \mathscr{F}_{m \alpha}\left[\alpha K_{m}^{\prime}(\alpha a)\right]^{-1} K_{m}(\alpha r) Z_{\alpha}(z)
\end{array} \\
& \qquad \mathscr{F}_{m \alpha}=(1 / d) \int_{0}^{h} f_{m}(z) Z_{\alpha}(z) d z \tag{2.14}
\end{align*}
$$

and, here and subsequently, the summation over α comprises each of the positive roots of (2.4) and, in addition, $\alpha=-i k\left(Z_{\alpha} \equiv Z_{k}\right.$ and $\mathscr{F}_{m \alpha} \equiv \mathscr{F}_{m k}$ for $\left.\alpha=-i k\right)$.

Equating the representations of (2.7) and (2.14) at $r=a$, dividing the result through by a, and introducing

$$
\begin{align*}
F_{m} & =\left[a Z_{k}^{\prime}(d)\right]^{-1}\left\{J_{m}(k a)-\left[J_{m}^{\prime}(k a) / H_{m}^{\prime}(k a)\right] H_{m}(k a)\right\} \\
& =2 i\left[\pi k a^{2} H_{m}^{\prime}(k a) Z_{k}^{\prime}(d)\right]^{-1}, \tag{2.16}\\
& G_{m}(x)=I_{m}(x) / x I_{m}^{\prime}(x) \tag{2.17}
\end{align*}
$$

we obtain

$$
\begin{align*}
& F_{m} Z_{k}(z)=\sum_{\alpha} \mathscr{F}_{m \alpha} \mathscr{G}_{m}(\alpha a) Z_{\alpha}(z)+m^{-1} F_{m 0} \\
&+2 \sum_{n=1}^{\infty} F_{m n} G_{m}(n \pi a / h) \cos (n \pi z / h) \quad(0 \leqslant z \leqslant h) \tag{2.19}
\end{align*}
$$

as the determining equation for $f_{m}(z)$. Substituting the integral representations of $\mathscr{F}_{m \alpha}$ and $F_{m n}$ from (2.6) and (2.15) into (2.19), we obtain the Fredholm integral equation

$$
\begin{equation*}
F_{m} Z_{k}(z)=\int_{0}^{h} g_{m}(z, \zeta) f_{m}(\zeta) d \zeta \quad(0 \leqslant z \leqslant h) \tag{2.20}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{m}(z, \zeta)=d^{-1} \sum_{\alpha} \mathscr{G}_{m}(\alpha a) Z_{\alpha}(z) Z_{\alpha}(\zeta)+h^{-1} \sum_{n=0}^{\infty} \epsilon_{n} G_{m}(n \pi \alpha / h) \cos (n \pi z / h) \cos (n \pi \zeta / h) \tag{2.21}
\end{equation*}
$$

is a symmetrical kernel. We remark that $G_{m}(0)=1 / m$ for $m \geqslant 1$ and that the term $n=0$ must be omitted from the last summation if $m=0$, in which case we also must invoke the constraint (2.8). We also notice that the asymptotic approximation (cf. Erdélyi et al. 1953, §7.13.2)

$$
\begin{equation*}
\mathscr{G}_{m}(\alpha a) \sim G_{m}(\alpha a) \sim\left(m^{2}+\alpha^{2} a^{2}\right)^{-\frac{1}{2}} \tag{2.22}
\end{equation*}
$$

is exact at $\alpha a=0$ for $m \geqslant 1$ and provides a fairly good interpolation for all real α, although not for $\alpha=-i k a$ (unless $k a \gg m$).

3. Variational formulation

We now construct a variational approximation for the surface-wave amplitude in the re-normalized form

$$
\begin{equation*}
\lambda_{m}=\mathscr{F}_{m k} / F_{m} . \tag{3.1}
\end{equation*}
$$

Multiplying both sides of (2.20) through by $f_{m}(z)$, integrating over $z=(0, h)$, dividing the result through by $d \mathscr{F}_{m k}^{2}$, and invoking the integral representation (2.15) for $\mathscr{F}_{m k}$ on the right-hand side, and (3.1) on the left-hand side, of the result, we obtain

$$
\begin{equation*}
\frac{1}{\lambda_{m}}=\frac{d \int_{0}^{h} \int_{0}^{h} f_{m}(z) g_{m}(z, \zeta) f_{m}(\zeta) d \zeta d z}{\left[\int_{0}^{h} f_{m}(z) Z_{k}(z) d z\right]^{2}} \tag{3.2}
\end{equation*}
$$

Invoking the standard variational procedure, we find that the right-hand side of (3.2) is stationary with respect to first-order variations of $f_{m}(z)$ about the true solution to (2.20). It also is invariant under a scale transformation of $f_{m}(z)$.

Now, let $f_{m}^{*}(z)$ be a trial function of arbitrary scale and let $F_{m n}^{*}$ and $\mathscr{F}_{m \alpha}^{*}$ be the corresponding Fourier coefficients, as obtained by replacing f_{m} by f_{m}^{*} in (2.6) and (2.15). Substituting f_{m}^{*} and g_{m} from (2.21) into (3.2), we obtain

$$
\begin{equation*}
\lambda_{m}=\mathscr{F}_{m k}^{* 2}\left[\sum_{\alpha} \mathscr{G}_{m}(\alpha a) \mathscr{F}_{m \alpha}^{* 2}+2(h / d) \sum_{n=1}^{\infty} \epsilon_{n} G_{m}(n \pi \alpha / h) F_{m n}^{* 2}\right]^{-1} \tag{3.3}
\end{equation*}
$$

Substituting $f_{m}(z)=C f_{m}^{*}(z)$ into (3.1) to determine the scale constant C, we obtain

$$
\begin{equation*}
f_{m}(z)=\left(\lambda_{m} F_{m} \mid \mathscr{F}_{m n}^{*}\right) f_{m}^{*}(z) . \tag{3.4}
\end{equation*}
$$

We could obtain $f_{m}(z)$ to any desired approximation by truncating the Fourier series (2.5) at $n=N$, substituting into (3.2), and requiring the result to be stationary with respect to first-order variations of each of $F_{m 0}, F_{m 1}, \ldots, F_{m N}$ to obtain $N+1$ linear equations in $F_{m 0}, F_{m 1}, \ldots, F_{m N}$ (N equations if $m=0$, since $F_{00} \equiv 0$); however, this is tantamount to, but less direct than, the solution of (2.19) by Galerkin's method. We prefer to exploit the variational formulation more directly by introducing an assumed trial function into (3.3).

Remarking that the radial displacement $f_{m}(z) \cos m \theta$ is excited by the incidentwave component $\psi_{m}(z)$, which exhibits the z-dependence $Z_{k}(z)$, we choose $f_{m}^{*}=Z_{k}$ for $m \geqslant 1$ and add a constant term for $m=0$ in order to satisfy (2.8):

$$
\begin{equation*}
f_{m}^{*}(z)=N_{k}^{-\frac{1}{2}}\left[\cosh k z-\delta_{m 0}(k h)^{-1} \sinh k h\right], \tag{3.5}
\end{equation*}
$$

where $\delta_{m 0}$ is the Kronecker delta. Substituting (3.5) into (2.6) and (2.15), we obtain

$$
\begin{equation*}
F_{n n}^{*}=(-)^{n} N_{k}^{-\frac{1}{2}}\left(n^{2} \pi^{2}+k^{2} h^{2}\right)^{-1} k h \sinh k h, \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
\left.+k d \cos \alpha h \sinh k h]-\delta_{m 0}(\alpha d k h)^{-1} \sin \alpha h \sinh k h\right\} \tag{3.7}
\end{equation*}
$$

$$
\mathscr{F}_{m \alpha}^{*}=\left(N_{\alpha} N_{k}\right)^{-\frac{1}{2}}\left\{\left(\alpha^{2} d^{2}+k^{2} d^{2}\right)^{-1}[\alpha d \sin \alpha h \cosh k h\right.
$$

and

$$
\begin{equation*}
\mathscr{F}_{m k}^{*}=\frac{1}{2}(h / d) N_{\bar{k}_{k}}^{-1}\left[1+(2 k h)^{-1} \sinh 2 k h-2 \delta_{m 0}(k h)^{-2} \sinh ^{2} k h\right] . \tag{3.8}
\end{equation*}
$$

The variational approximation based on the trial function of (3.5) has the virtue of yielding the exact results for the scattering cross-section and the lateral
force on the dock in the limit $k a \rightarrow \infty$. More accurate results for small values of $k a$ might be obtained by using a trial function that reproduces the singularity in $f(z)$ at $z=h$, but this singularity is so weak that the differences are unlikely to be

Figure 2a. The total scattering cross-section, as given by (4.4), for $d / a=\frac{3}{4} . \sigma=Q / a$.

Figure $2 b$. The total scattering cross-section, as given by (4.4), for $d / a=\frac{1}{2} . \sigma=Q / a$.
important; and, in any event, the results for $k a \ll 1$ are of limited interest in the present context.

The numerical results given in $\S \S 4$ and 5 below are based on the variational approximation to λ_{m}, as obtained by substituting (3.6)-(3.8) into (3.3).

4. Scattering amplitude

Substituting (2.14) into (1.6) and letting $k r \rightarrow \infty$, we obtain

$$
\begin{align*}
& \chi_{m}(r) \sim J_{m}(k r)+\left\{-\left[J_{m}^{\prime}(k a) / H_{m}^{\prime}(k a)\right]\right. \\
&\left.+\left[\mathscr{F}_{m k} Z_{k}^{\prime}(d) / k H_{m}^{\prime}(a)\right]\right\}(2 / \pi k r)^{\frac{1}{2}} e^{i\left(k r-\frac{1}{2} m \pi-\frac{1}{2} \pi\right)} \quad(k r \rightarrow \infty) . \tag{4.1}
\end{align*}
$$

Substituting $\mathscr{F}_{m k}$ into (4.1) from (3.1) and (2.16b), substituting the resulting expression for χ_{m} into (1.2), and comparing the resulting expression for ζ to (1.1b) and (1.12), we obtain the scattering amplitude in the form

$$
\begin{equation*}
A(\theta)=\sum_{m=0}^{\infty} \epsilon_{m} A_{m} \cos m \theta \tag{4.2}
\end{equation*}
$$

where $A_{m}=(2 / \pi k a)^{\frac{1}{2}}\left\{-\left[J_{m}^{\prime}(k a) / H_{m}^{\prime}(k a)\right] e^{-i \pi / 4}+\left(2 \lambda_{m} / \pi\right)\left[k a H_{m}^{\prime}(k a)\right]^{-2} e^{i \pi / I}\right\}$.

$$
k a=\frac{1}{2} \quad \bigcirc
$$

$$
\begin{equation*}
k a=\frac{1}{2} \bigcirc \tag{4.3}
\end{equation*}
$$

Figure 3. The differential scattering cross-section, $|\boldsymbol{A}(\theta)|^{2}$. The cross indicates the centre of the dock, and the incident wave is travelling from left to right.

Substituting (4.2) into (1.13), we obtain the total scattering cross-section in the form

$$
\begin{equation*}
Q=2 \pi a \sum_{0}^{\infty} \epsilon_{m} A_{m}^{2} \tag{4.4}
\end{equation*}
$$

We remark that the second term in (4.3) is asymptotically negligible compared with the first as $k a \rightarrow \infty$, in consequence of which the asymptotic value of Q is that for a circular cylinder, namely (cf. Morse \& Feshbach 1953, p. 1381)

$$
\begin{equation*}
Q \sim 4 a \quad(k a \rightarrow \infty) . \tag{4.5}
\end{equation*}
$$

We give graphical results for the total scattering cross-section, Q / a, in figures $2 a, b$ and for the differential scattering cross-section, $|A(\theta)|^{2}$, in figures $3 a, b$. We call attention to the resonant peaks in both Q / a and $|A(\theta)|^{2}$ near $k a=2$.

These peaks become more pronounced as the draft, $d-h$, decreases (see especially the results for $h / d=4 / 5$ in figure $2 b$) and are characteristic of the limiting case of seattering by a rigid disk ($d-h \rightarrow 0$); on the other hand, they disappear in the limit $h \rightarrow 0$, wherein the scattering tends to that for a circular cylinder.

5. Peripheral disturbance

The ratio of the wave amplitude at the dock to that of the incident wave, obtained by setting $r=a$ in (1.2), is of special interest. Substituting (2.14) into (1.6) and introducing

$$
\begin{equation*}
\chi_{m}^{(0)}(a)=2 i\left[\pi k a H_{m}^{\prime}(k a)\right]^{-1} \tag{5.1}
\end{equation*}
$$

we obtain

$$
\begin{gather*}
\chi_{m}(a)=\chi_{m}^{(0)}(a)-a \sum_{\alpha} \mathscr{F}_{m \alpha} \mathscr{G}_{m \alpha}(\alpha a) Z_{\alpha}^{\prime}(d) . \tag{5.2}\\
a \mathscr{F}_{m k}=\lambda_{m} \chi_{m}^{(0)}(a) / Z_{k}^{\prime}(d) \tag{5.3}
\end{gather*}
$$

Substituting
from (3.1) and (2.16b), and [cf. (3.4)]

$$
\begin{equation*}
\mathscr{F}_{m \alpha}=\mathscr{F}_{m k}\left(\mathscr{F}_{m \alpha}^{*} \mid \mathscr{F}_{m k}^{*}\right) \tag{5.4}
\end{equation*}
$$

into (5.2), we obtain

$$
\begin{equation*}
\chi_{m}(a)=\chi_{m}^{(0)}(a)\left\{1-\lambda_{m} \sum_{\alpha}\left(\mathscr{F}_{m \alpha}^{*} / \mathscr{F}_{m k}^{*}\right)\left[Z_{\alpha}^{\prime}(d) / Z_{k}^{\prime}(d)\right] \mathscr{G}_{m}(\alpha a)\right\} . \tag{5.5}
\end{equation*}
$$

We remark that $\chi_{m}^{(0)}(a)$ is the amplitude ratio in the special case $h=0$.
The peripheral displacement obtained by substituting (5.5) into (1.2) is plotted in figures $4 a, b$. We observe that the variation of the displacement with $k a$ in the illuminated and shadow zones follows classical behaviour.

The wave-induced force on the dock is in (or opposite to) the direction of the incident wave and is given by the real part of $X \exp (-i \sigma t)$, where

$$
\begin{align*}
X & =\rho \sigma^{2} \zeta_{0} a \int_{0}^{2 \pi} \int_{h}^{a} \phi(a, \theta, z) \cos \theta d \theta d z \tag{5.6a}\\
& =2 \pi i \rho \sigma^{2} \zeta_{0} a \int_{h}^{d} \psi_{1}(a, z) d z, \tag{5.6b}
\end{align*}
$$

and (5.6b) follows from (5.6a) by virtue of (1.5). Setting $r=a$ and $m=1$ in (2.14) and invoking (5.1), (5.3) and (5.4), we obtain

$$
\begin{equation*}
\psi_{1}(a, z)=(k \sinh k d)^{-1} \chi_{1}^{(0)}(a)\left\{\cosh k z-\lambda_{1} \sum_{\alpha}\left(\mathscr{F}_{1 \alpha}^{*} / \mathscr{F}_{1 k}^{*}\right)\left(N_{k k} / N_{\alpha}\right)^{\frac{1}{2} \mathscr{G}} \mathscr{G}_{1}(\alpha a) \cos \alpha z\right\} . \tag{5.7}
\end{equation*}
$$

Substituting (5.7) into (5.6b) and dividing the result through by the displacement weight,

$$
\begin{equation*}
W=\pi a^{2}(d-h) \rho g \tag{5.8}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\frac{X}{W}=\frac{2 i \kappa \zeta_{0} \chi_{1}^{(0)}(a)}{k a \sinh k d}\left\{\frac{\sinh k d-\sinh k h}{k d-k h}-\lambda_{1} \sum_{\alpha}\left(\frac{\mathscr{F}_{1 \alpha}^{*}}{\mathscr{F}_{1 k}^{*}}\right)\left(\frac{N_{k}}{N_{\alpha}}\right)^{\frac{1}{2}} \mathscr{G}_{1}(\alpha a)\left(\frac{\sin \alpha d-\sin \alpha h}{\alpha d-\alpha h}\right)\right\} \tag{5.9}
\end{equation*}
$$

The result (5.9) is plotted in figures $5 a, b$. We observe that the maximum value of X / W increases with increasing draft, as also does the wavelength at which this maximum occurs. A practical design criterion appears to involve a compro-
mise. As the draft of the dock increases the scattering cross-section, Q, decreases, but the wave-induced force, X / W, increases. Small Q is desirable for near-shore docks in order to minimize changes in beach-transport processes; on the other

Frgure 4. The peripheral displacement relative to that of the incident wave. The cross indicates the centre of the dock, and the incident wave is travelling from left to right.
hand, small X / W is desirable so that design safety factors can be optimized. The theoretical and numerical results presented here should be a useful engineering aid in reaching a practical compromise.

This work was partially supported by the National Science Foundation and by the Office of Naval Research.

Figure 5a. The lateral force on the dock relative to the product of the buoyancy force and the amplitude ratio ζ_{0} / a, as given by (5.9), for $d / a=\frac{3}{4}$.

Figure 5b. The lateral force on the dock relative to the product of the buoyancy force and the amplitude ratio ζ_{0} / a, as given by (5.9), for $d / a=\frac{1}{2}$.

REFERENCES

Erdécyi, A., Magnus, W., Oberhettinger, F. \& Tricomi, F. G. 1953 Higher Transcendental Functions, Vol. 2. New York: McGraw-Hill.
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.
Levine, H. \& Schwinger, J. 1948 On the theory of diffraction by an aperture in a plane screen. I. Phys. Rev. 74, 958-74.
Morse, P. M. \& Feshbach, H. 1953 Methods of Theoretical Physics. Part II. New York: McGraw-Hill.

[^0]: \dagger Also Department of Aerospace and Mechanical Engineering Sciences.
 \ddagger Also Scripps Institution of Oceanography.
 § This study was motivated by the proposed design for an artificial island offshore from the Scripps Institution of Oceanography.

[^1]: \dagger The roots of (2.4) are given by $\alpha=(p \pi / d)-(\kappa / p \pi), p=1,2, \ldots$, with a meximum error of 1% for $\kappa d=1$ and of less than 1% for all but the lowest $(p=1)$ mode for $\kappa d<\mathbf{1 0}$.

